Thursday, June 27, 2013

3RD Aeronautical Engineering SEMESTER 1 SUPPLEMENTARY JUNE 2010 JNTU B.TECH ENGINEERING QUESTION PAPER - AEROSPACE VEHICLE STRUCTURES-I

Code No:  R05312104                    R05          Set No.   2

 

 

III  B.Tech I Semester Supplementary Examinations,June 2010

AEROSPACE VEHICLE STRUCTURES-I Aeronautical Engineering

Time: 3 hours                                                                                  Max Marks:  80

Answer any FIVE Questions

All  Questions carry equal marks

? ? ? ? ?

 

1. The figure 6 shows a rolled steel beam of unsymmetrical  I- section.  If a similar I- section is welded on the top of it to form a symmetrical section, determine the ratio of the  moment  of resistance  of the  new section to that  of single section.  Assume the permissible bending stress in tension and compression to be the same.       [16]

Figure 6

 

2. A beam AB of length 10 m is fixed at both  ends and carries a U.D.L. of intensity

10 kN/m.  calculate the fixing moments if the end B sinks by 1 cm. Take I = 14,500 cm4, E=  2.1 × 105  N/mm2 .                                                                                      [16]

 

3. A pin  jointed  strut  carries  an  axial  compressive  load  P  together  with  a  lateral concentrated load W at the mid span as shown in figure 4. Determine the deflection at the mid-span  of the strut.                                                                          [16]

Figure 4

 

4. For a cantilever of length L and loaded with a point load P at its free end as shown in figure 2, the deflection equation  (with x=0  at the free end) is given as

 

 

1


Code No:  R05312104                    R05          Set No.   2

 

 

y = -(P/6EI)(2L3 - 3L2x+  x3 ).  Use the  Maxwell reciprocal theorm  to determine the deflection of free end of the cantilever  when a load W is applied at a distance

'a' from the free end.                                                                                                  [16]

 

Figure 2

 

5. A metallic tube 5 m long, when subjected to axial tensile load of 50 kN experiences an extension  of 5 mm.   The  tube  is of 40 mm external  and  25 mm internal  dia. If the  tube  is now hinged at  its ends and subjected  to an axial compressive load, determine  the maximum  safe value for such a load.  Take factor of safety as 3. [16]

 

6. Determine  the natural frequency of the system shown in figure 8 .Given k1=k2  =

1500 N/m,  k3  = 2000N/m,  m = 5 kg.                                                                     [16]

Figure 8

 

7. A cantilever  beam  AB  6 m long is subjected  to  u.d.l  of w KN/m.   spread

over the entire length.  Assume rectangular cross-section with depth  equal to twice the breadth. Determine  the minimum  dimension of the beam so that  the vertical deflection at free end does not exceed 1.5 cm and minimum stress due to bending does not exceed 10K N/C m2.  Take E = 2 × 107N/C m2 .                                      [16]

 

8. A mass  is suspended  from a spring  system  as shown in figure 5 Determine  the

natural frequency of the system.  Take k1  = 5000N/m,  k2  = k3  = 8000 N/m,  m =

25 kg.                                                                                                                           [16]

 

 

 

 

 

  

Figure 5

 

Code No:  R05312104                    R05          Set No.   4

 

 

III  B.Tech I Semester Supplementary Examinations,June 2010

AEROSPACE VEHICLE STRUCTURES-I Aeronautical Engineering

Time: 3 hours                                                                                  Max Marks:  80

Answer any FIVE Questions

All  Questions carry equal marks

? ? ? ? ?

 

 

1. A metallic tube 5 m long, when subjected to axial tensile load of 50 kN experiences an extension  of 5 mm.   The  tube  is of 40 mm external  and  25 mm internal  dia. If the  tube  is now hinged at  its ends and subjected  to an axial compressive load, determine  the maximum  safe value for such a load.  Take factor of safety as 3. [16]

 

2. The figure 6 shows a rolled steel beam of unsymmetrical  I- section.  If a similar I- section is welded on the top of it to form a symmetrical section, determine the ratio of the  moment  of resistance  of the  new section to that  of single section.  Assume the permissible bending stress in tension and compression to be the same.       [16]

Figure 6

 

3. For a cantilever of length L and loaded with a point load P at its free end as shown in figure 2, the deflection equation  (with x=0  at the free end) is given as

y = -(P/6EI)(2L3 - 3L2x+  x3 ).  Use the  Maxwell reciprocal theorm  to determine

the deflection of free end of the cantilever  when a load W is applied at a distance

'a' from the free end.                                                                                                  [16]

 

 

 

 

 

 

 

 

 

 

 

4


Code No:  R05312104                    R05          Set No.   4

 

 

Figure 2

 

4. A cantilever  beam  AB  6 m long is subjected  to  u.d.l  of w KN/m.   spread

over the entire length.  Assume rectangular cross-section with depth  equal to twice the breadth. Determine  the minimum  dimension of the beam so that  the vertical deflection at free end does not exceed 1.5 cm and minimum stress due to bending does not exceed 10K N/C m2.  Take E = 2 × 107N/C m2 .                                      [16]

 

5. Determine  the natural frequency of the system shown in figure 8 .Given k1=k2  =

1500 N/m,  k3  = 2000N/m,  m = 5 kg.                                                                     [16]

Figure 8

 

6. A pin  jointed  strut  carries  an  axial  compressive  load  P  together  with  a  lateral concentrated load W at the mid span as shown in figure 4. Determine the deflection at the mid-span  of the strut.                                                                          [16]

Figure 4

 

7. A mass  is suspended  from a spring  system  as shown in figure 5 Determine  the natural frequency of the system.  Take k1  = 5000N/m,  k2  = k3  = 8000 N/m,  m =

25 kg.                                                                                                                           [16]

 

 

 

5


Code No:  R05312104                    R05          Set No.   4

 

 

Figure 5

 

8. A beam AB of length 10 m is fixed at both  ends and carries a U.D.L. of intensity

10 kN/m.  calculate the fixing moments if the end B sinks by 1 cm. Take I = 14,500 cm4, E=  2.1 × 105  N/mm2 .                                                                                     [16]

 

 

? ? ? ? ?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6


Code No:  R05312104                    R05          Set No.   1

 

 

III  B.Tech I Semester Supplementary Examinations,June 2010

AEROSPACE VEHICLE STRUCTURES-I Aeronautical Engineering

Time: 3 hours                                                                                  Max Marks:  80

Answer any FIVE Questions

All  Questions carry equal marks

? ? ? ? ?

 

 

1. A beam AB of length 10 m is fixed at both  ends and carries a U.D.L. of intensity

10 kN/m.  calculate the fixing moments if the end B sinks by 1 cm. Take I = 14,500 cm4, E=  2.1 × 105  N/mm2 .                                                                                      [16]

 

2. The figure 6 shows a rolled steel beam of unsymmetrical  I- section.  If a similar I- section is welded on the top of it to form a symmetrical section, determine the ratio of the  moment  of resistance  of the  new section to that  of single section.  Assume the permissible bending stress in tension and compression to be the same.       [16]

Figure 6

 

3. A pin  jointed  strut  carries  an  axial  compressive  load  P  together  with  a  lateral concentrated load W at the mid span as shown in figure 4. Determine the deflection at the mid-span  of the strut.                                                                          [16]

Figure 4

 

 

 

 

7


Code No:  R05312104                    R05          Set No.   1

 

 

4. A cantilever  beam  AB  6 m long is subjected  to  u.d.l  of w KN/m.   spread

over the entire length.  Assume rectangular cross-section with depth  equal to twice the breadth. Determine  the minimum  dimension of the beam so that  the vertical deflection at free end does not exceed 1.5 cm and minimum stress due to bending does not exceed 10K N/C m2.  Take E = 2 × 107N/C m2 .                                      [16]

 

5. A metallic tube 5 m long, when subjected to axial tensile load of 50 kN experiences an extension  of 5 mm.   The  tube  is of 40 mm external  and  25 mm internal  dia. If the  tube  is now hinged at  its ends and subjected  to an axial compressive load, determine  the maximum  safe value for such a load.  Take factor of safety as 3. [16]

 

6. Determine  the natural frequency of the system shown in figure 8 .Given k1=k2  =

1500 N/m,  k3  = 2000N/m,  m = 5 kg.                                                                     [16]

Figure 8

 

7. A mass  is suspended  from a spring  system  as shown in figure 5 Determine  the natural frequency of the system.  Take k1  = 5000N/m,  k2  = k3  = 8000 N/m,  m =

25 kg.                                                                                                                           [16]

 

Figure 5

 

8. For a cantilever of length L and loaded with a point load P at its free end as shown

in figure 2, the deflection equation  (with x=0  at the free end) is given as

y = -(P/6EI)(2L3 - 3L2x+  x3 ).  Use the  Maxwell reciprocal theorm  to determine

the deflection of free end of the cantilever  when a load W is applied at a distance

'a' from the free end.                                                                                                  [16]

 

 

 

8


Code No:  R05312104                    R05          Set No.   1

 

 

Figure 2

 

 

? ? ? ? ?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9


Code No:  R05312104                    R05          Set No.   3

 

 

III  B.Tech I Semester Supplementary Examinations,June 2010

AEROSPACE VEHICLE STRUCTURES-I Aeronautical Engineering

Time: 3 hours                                                                                  Max Marks:  80

Answer any FIVE Questions

All  Questions carry equal marks

? ? ? ? ?

 

 

1. A cantilever  beam  AB  6 m long is subjected  to  u.d.l  of w KN/m.   spread

over the entire length.  Assume rectangular cross-section with depth  equal to twice the breadth. Determine  the minimum  dimension of the beam so that  the vertical deflection at free end does not exceed 1.5 cm and minimum stress due to bending does not exceed 10K N/C m2.  Take E = 2 × 107N/C m2 .                                      [16]

 

2. For a cantilever of length L and loaded with a point load P at its free end as shown

in figure 2, the deflection equation  (with x=0  at the free end) is given as

y = -(P/6EI)(2L3 - 3L2x+  x3 ).  Use the  Maxwell reciprocal theorm  to determine the deflection of free end of the cantilever  when a load W is applied at a distance

'a' from the free end.                                                                                                  [16]

 

Figure 2

 

3. A metallic tube 5 m long, when subjected to axial tensile load of 50 kN experiences an extension  of 5 mm.   The  tube  is of 40 mm external  and  25 mm internal  dia. If the  tube  is now hinged at  its ends and subjected  to an axial compressive load, determine  the maximum  safe value for such a load.  Take factor of safety as 3. [16]

 

4. A pin  jointed  strut  carries  an  axial  compressive  load  P  together  with  a  lateral concentrated load W at the mid span as shown in figure 4. Determine the deflection at the mid-span  of the strut.                                                                          [16]

Figure 4

 

 

 

10


Code No:  R05312104                    R05          Set No.   3

 

 

5. A mass  is suspended  from a spring  system  as shown in figure 5 Determine  the natural frequency of the system.  Take k1  = 5000N/m,  k2  = k3  = 8000 N/m,  m =

25 kg.                                                                                                                           [16]

 

Figure 5

 

6. The figure 6 shows a rolled steel beam of unsymmetrical  I- section.  If a similar I- section is welded on the top of it to form a symmetrical section, determine the ratio of the  moment  of resistance  of the  new section to that  of single section.  Assume the permissible bending stress in tension and compression to be the same.       [16]

Figure 6

 

7. A beam AB of length 10 m is fixed at both  ends and carries a U.D.L. of intensity

10 kN/m.  calculate the fixing moments if the end B sinks by 1 cm. Take I = 14,500 cm4, E=  2.1 × 105  N/mm2 .                                                                                      [16]

 

8. Determine  the natural frequency of the system shown in figure 8 .Given k1=k2  =

1500 N/m,  k3  = 2000N/m,  m = 5 kg.                                                                     [16]

 

 

No comments:

Post a Comment